The generator matrix

 1  0  0  0  0  0  0  1  1  1  0  1  X  1  1  0  1  1  1  1  X  X  X  1  1  X  1  X  1  X  0  X  1  1  1  0  X  X  1  1  1  X  X  X  1  X  X  0  X  X  X  0  0  0  1  1  0  1  X  1  0  0  1
 0  1  0  0  0  0  0  0  0  0  0  0  0  0  X  X  X  1 X+1  1  1  1  1  1 X+1  1 X+1  X X+1  1  1  1 X+1  1  0  X  1  0 X+1  0  X  X  1  X  X  X  1  1  1  1  0  1  0  0  X X+1  1  0  0 X+1  0  0  0
 0  0  1  0  0  0  0  0  0  0  0  0  0  X  0  0  X  0  0  0  0  0  X  X  X  0  X  X  X  1 X+1  1  1  1 X+1  1 X+1  1 X+1  1  1  1 X+1  1  1  1 X+1  X  X  1  1  X  1  1  0  0 X+1 X+1  X  X  1  X  0
 0  0  0  1  0  0  0  0  0  X  X  1  1 X+1 X+1  1  1 X+1 X+1  1 X+1  0 X+1  0  0  X  X  1 X+1 X+1  0  X  0  0  X X+1  X  1  1 X+1  X  X X+1  X  0  1  1  1  X  1 X+1 X+1  X X+1  0  X  X X+1  1  1 X+1  1  0
 0  0  0  0  1  0  0  X  1 X+1  1  0  1  1  1 X+1  X X+1  1  X  X  0  1  X  1 X+1  1  0  0  1  1  1  X  1  0  X  0 X+1  X  0  1  0  X  X  0  0  0  X  1 X+1 X+1  X X+1  X  0  1  1 X+1  1 X+1  1  X  0
 0  0  0  0  0  1  0 X+1  1  0  1  X X+1 X+1  0  X X+1 X+1  X  1  0  1 X+1  0  X  0  1 X+1  X  0 X+1  X X+1 X+1  0  1  1  0  1  1 X+1  0  1  1 X+1  0 X+1  0 X+1  1  0  X  X  X  1 X+1  1  1  1  X  0  X  0
 0  0  0  0  0  0  1  1  X  1  1 X+1  X  1  X  1  X  0  1 X+1 X+1 X+1 X+1 X+1  0  1  1 X+1  X  0  X  1  X X+1  0  1  1 X+1  1  X  0  1  0  X X+1  0  1  X  1  0  0  X  0  1  X  1  1  0  1  0  X  0  0

generates a code of length 63 over Z2[X]/(X^2) who�s minimum homogenous weight is 50.

Homogenous weight enumerator: w(x)=1x^0+60x^50+96x^51+253x^52+346x^53+479x^54+492x^55+601x^56+710x^57+766x^58+878x^59+951x^60+982x^61+971x^62+1122x^63+949x^64+1084x^65+977x^66+928x^67+887x^68+674x^69+617x^70+468x^71+361x^72+250x^73+194x^74+98x^75+77x^76+46x^77+29x^78+14x^79+16x^80+4x^81+2x^82+1x^98

The gray image is a linear code over GF(2) with n=126, k=14 and d=50.
This code was found by Heurico 1.16 in 68.8 seconds.